
Bounding Execution Resources for the Task Scheduling
Problem in Cyber-Physical Systems

Vlad Rădulescu

A. I. Cuza University of Iaşi

Department of Computer Science

Iaşi, Romania

rvlad@info.uaic.ro

Ştefan Andrei

Lamar University

Department of Computer Science

Beaumont, TX, USA

sandrei@cs.lamar.edu

Albert M.K. Cheng

University of Houston

Department of Computer Science

Houston, TX, USA

cheng@cs.uh.edu

ABSTRACT
In designing and analyzing real-time systems, the central

problem resides in finding a feasible schedule for a given task

set, if one exists. A lot of research effort has been carried out

in approaching the various aspects of task scheduling. While

most results have been achieved for preemptive scheduling,

the non-preemptive case has still room for improvement,

due to its complexity. In addition, the widespread usage of

cyber-physical systems (CPS) is putting real-time scheduling

in the position to deal with new challenges, as additional

(and sometimes particular) requirements are raised by such

systems.

This paper, which continues the previous work of the

authors, introduces a new lower bound on the number of

processing units that allows a feasible schedule of a task set

for both preemptive and non-preemptive scheduling. As a

specific CPS issue, the necessity of moving the processing

units in space, which incurs additional time requirements, is

considered. The single-instance case is first discussed, then

the results are extended to the periodic case.

KEYWORDS
multiprocessor scheduling; lower and upper bounds for the

number of processors

1 INTRODUCTION
Recently, it has become clear that the diversity of potential

applications for cyber-physical systems is tremendous. Un-

fortunately, so has the variety of requirements brought by

these systems. If we are to look only at some of the fields

that already benefit from the use of CPSs, such as robotics,

automotive industry, healthcare monitoring, process control,

or flight control, we easily see that each of these fields comes

ESWeek Workshop on Declarative Embedded and Cyber-Physical Systems,

October 19, 2017, Seoul, South Korea. Copyright held by the owner/author(s).

with its own specific problems to be addressed, entirely dif-

ferent from the others. As most cyber-physical systems need

to have real-time characteristics, this diversity has come to

question the effectiveness of the models and methodologies

developed for “classic” real-time systems [21].

Until new paradigms will emerge, one way for the real-

time systems to adapt to the CPS world might be to return

to simpler structures and approaches. This approach will

eliminate some of the features that are helpful for other

applications, but here can affect the desired behavior. One

such option is to pay more attention to non-preemptive

scheduling.

Preemptive scheduling has been largely studied, and nu-

merous results have been achieved for a quite large range of

problems. Two of the best-known algorithms, namely EDF

(Earliest Deadline First) [14] and LLF (Least Laxity First)

[25], are optimal for the case of single-processor, preemptive

scheduling. These two algorithms are still the starting points

for many recent techniques, which attempt to combine and

improve them.

EDZL (Earliest Deadline first until Zero Laxity) [22],[10]

handles the particular case of zero-laxity tasks by assigning

them the highest priority, while for the rest of the time it

only considers deadlines, in an EDF-based manner.

FPZL (Fixed Priority until Zero Laxity) [12] and its two

variants, FPSL (Fixed Priority until Static Laxity) and FPCL

(Fixed Priority until Critical Laxity) [13] use global fixed

priority preemptive scheduling, except again for the case

of zero-laxity tasks, which receive the highest priority, just

as for the previous technique. Despite all attempts of im-

provement, however, for most subclasses of the scheduling

problem, there is no optimal algorithm [30].

However, preemptive scheduling, with all its advantages,

also has some performance issues: the runtime overhead in-

troduced by preemption itself, which is not only significant,

but sometimes even unpredictable, depending on the sched-

uling algorithm [7]; the complexity of mutual exclusion [29];

higher memory consumption [24]; the effects of preemp-

tion on program locality (cache misses, wrong working of

prefetch mechanisms), which also affects the predictability

of the system’s behavior [27]. Worse, in some cases pre-

emption may be impossible or too expensive to be used in

practice [17]. While many of these factors are rather general,

the insufficient predictability caused by some of them is par-

ticularly undesirable in the case of cyber-physical systems

[21]. Thus, the door opens for non-preemptive scheduling,

which re-emerges as an option.

The price to be paid consists in the higher difficulty of non-

preemptive scheduling. In fact, the non-preemptive schedul-

ing problem has been proven to be NP-hard [8], [16], [9],

[5], [18], [19], so it comes as no surprise that the majority of

the results have been achieved for preemptive scheduling.

It is hard to get a general description of the challenges the

cyber-physical systems are facing, due to the very nature of

the problems they have to solve. Nevertheless, some issues

show up in many cases, like network interconnection and

low consumption. It is c that the most common of them is

the mobile nature of the devices which have to be controlled.

This paper is not focusing on the scheduling itself, but

on the number of processing units that are necessary in

the system. Usually, starting from a given number of pro-

cessors in a system, one attempts to determine whether a

feasible schedule can be found. Such an approach is justified

by the fact that the preemptive scheduling problem can be

solved through linear programming if the number of pro-

cessors is fixed [1]; however, if the number of processors is

unbounded, the scheduling problem becomesNP-hard [20].

On the other hand, the non-preemptive scheduling problem

is NP-hard in all cases [6], [19]. That is why results that

hold both for preemptive and non-preemptive scheduling

are needed.

In this paper, a different approach is taken, starting from

a given task set and determining the minimum number of

processing units that might allow the existence of a feasi-

ble schedule; the time delay incurred by the movement of

the processing unit is also taken into account. When non-

preemptive scheduling is considered, this minimum num-

ber does not guarantee schedulability; instead, it sets up a

lower bound on the number of processors. In the case of pre-

emptive scheduling, the lower bound is closer to providing

guarantees of schedulability, although a 100% certainty still

remains to be proved. An upper bound is also determined,

in order to set up a limit beyond which any addition of new

processing units to the system will be useless.

The cases of single-instance tasks and periodic tasks, re-

spectively, are considered in the paper, for both the lower

and the upper bound.

The remainder of the paper is organized as follows. Sec-

tion 2 shows the notations used in the paper and the as-

sumptions under which the lower and upper are computed.

Section 3 introduces the new lower bound on the number

of processing units for single-instance tasks, which an im-

proved version of previous work of the authors and, be-

sides, is also adapted to the requirements of cyber-physical

systems. In Section 4, the result is extended to the case of

periodic tasks. Section 5 briefly discusses the upper bound.

Finally, Section 6 draws the conclusions and lays the path

for future research.

2 THE MODEL
A single-instance task is executed exactly once. Thus, for

a set of single-instance T = {T1, . . . ,Tn }, each task Ti is
described as Ti = (si , ci ,di), where:
si – the start time of the task

ci – the computational cost of the task (i.e., the execution

time)

di – the deadline of the task

In the case of cyber-physical systems, additional elements

must be considered. One of the many facets of handling CPSs

is the necessity of moving the servicing unit (i.e., the pro-

cessing unit) to the location where the service is performed

and back to the base location of the servicing unit. Apart

from the additional power consumption, there is always an

additional time required for reaching the destination point

and then returning to the base location [26]. This, of course,

must be explicitly considered by the scheduling algorithm.

For simplicity, for each task Ti , the delays introduced by

movements to and from the servicing location are consid-

ered equal, so they are described by the same delay value,

denoted bymi .

Another issue is that a CPS is typically a highly hetero-

geneous system, whose components have various specifi-

cations and yield various performance capabilities [23]. For

example, the different response times of the different sen-

sors have an impact on the times when the tasks may be

scheduled. This paper is considering sets of independent

tasks, thus the start times of the tasks are determined by the

requirements on the actions the perform and not by inter-

task dependencies. In our model, then, for each task Ti , the
delays introduced by the response times of the sensors used

by Ti are included in the start time si .
A periodic task is executed repeatedly, on a periodic basis.

In this case, each task Ti is defined as Ti = (Si , ci ,Di ,pi),
where:

Si - the initial start time

ci - the computational cost

Di - the initial deadline

pi - the task period

Based on the definition above, the following notations

are used to describe a particular instance of a task Ti :
si,k = Si + k · pi - the start time of instance k
ci,k = ci - the computational cost of instance k
di,k = Di + k · pi - the deadline of instance k

Additionally, we consider that si,k+1 > di,k ,∀k ∈ N,
that is, a certain instance of a task may not start before the

deadline of its previous instance.

Of course, the modeling of cyber-physical systems is the

same as described above for single-instance tasks.

3 THE LOWER BOUND
In [3], the authors proposed a formula for computing the

lower bound on the required number of processors for a

multi-processor, non-preemptive, independent task set T =

{T1, . . . ,Tn }.While theworkwas focusing on non-preemptive

scheduling, the result is also useful in the preemptive case.

The idea is to put together, for each time interval (t1, t2), the
minimum CPU time required until the end of the interval,

which is t2 (that is, the processor time necessary such that

all tasks may meet their deadlines), and the maximum CPU

time available for execution before the start of the interval,

namely t1 (corresponding to the tasks whose start times

have been reached, so they may be scheduled for execution).

The difference between these two times gives the minimum

amount of CPU time that is necessary for execution during

the interval (t1, t2), which, in turn, leads to the minimum

number of processors necessary during that interval. Since

the total number of processors must cover the worst-case

time interval, it has to be computed as the maximum value

over all possible time intervals. Having a number of pro-

cessors equal to the lower bound does not guarantee that

a feasible schedule can be found, but it is certain that, on

a system with fewer processors, a feasible schedule is not

possible.

Obviously, this technique requires knowing in advance

the start times, deadlines, and computational times of the

tasks, which is a limitation for some real-time systems. Nev-

ertheless, in practice there are many systems that comply

with this restriction; besides, any kind of on-the-fly estima-

tion of the number of processors, without prior knowledge

on the tasks, is clearly impossible.

In attempting to find such a lower bound, we start by

observing that the minimum CPU time required changes

only when at least one task’s deadline is reached; similarly,

the maximum CPU time available changes only when at

least one task’s start time is reached. Thus, we do not need

to consider all possible time intervals. Instead, the computa-

tions must be performed only for all intervals (sj ,di), where
sj is the start time of task Tj , di is the deadline of task Ti ,
and di > sj .

So, for each task Ti in the set, we have the following

terms:

• The requested execution time (Ri), the minimum

amount of CPU time that must be available to the

tasks before the deadline of Ti .
• The available execution time (Ai), themaximum amount

of CPU time that may be available to the tasks before

the start time of Ti .

For any time interval (sj ,di), by subtracting the available

execution time from the requested execution time, we get the

minimum amount of execution time that is needed within

that time interval; furthermore, dividing this value against

the length of the interval (i.e., di −sj) results in the minimum

Table 1: Example - requested and available execution
times.

Task index (i) si ci di Ri A1

i A2

i A3

i
1 0 3 9 10 0 1 5

2 1 4 7 8 0 1 3

3 3 3 6 6 0 0 2

number of processors that are necessary during the interval.

Of course, the lower bound is obtained by performing this

computation for all time intervals (sj ,di).
The requested execution timeRi is computed by summing

up the elements below:

• For each task Tj with dj ≤ di , the whole computa-

tional cost c j must be considered; otherwise, task Tj
would not meet its deadline.

• For each task Tj with di < dj < di + c j , an execution

time of c j − (dj −di) is considered; if taskTj executed
less time before di , it would no longer be possible for

it to meet its deadline.

As an example, let us consider the task set in Table 1. We

see that:

• R1 = 3 + 4 + 3 = 10, because all tasks must be termi-

nated by time d1, which is the latest deadline

• R2 = 1 + 4 + 3 = 8, as tasks T2 and T3 must be termi-

nated by deadline d2, while task T1 must execute at

least 1 time unit until the same moment

• R3 = 0 + 3 + 3 = 6: by deadline d3, task T3 must be

terminated, taskT2 must execute at least 3 time units,

and task T1 may start executing afterwards

For cyber-physical systems, as seen before, the delay re-

quired for moving the processing unit to the destination

location and back to the base location must also be handled.

In the expression of Ri , these delays (both of the same value

mi in our model) must be added to the computational cost,

as together they give the amount of time during which a

processing unit is used exclusively for servicing a certain

location (i.e., where the corresponding task is executed). In

addition, the deadline must be extended bymi ; the rationale

is that, if the execution of the task must be completed until

time di , then the processing unit must be released (i.e., be-

come available again) until time di +mi , when returning to

the base location must also be done.

For the sake of simplicity, we denote the adjusted com-

putational cost of a task Ti , which also considers the trans-

portation delays, by c
′

i = ci +mh · 2. Similarly, the adjusted

deadline is denoted by d
′

i = di +mi .

The analytical expression of the sum above, based on [3]

and adding the delays discussed above, can then be expressed

as:

Ri =
∑
h

d ′

h ≤d
′

i

c
′

h +
∑
h

d ′

i <d
′

h<d
′

i+c
′

h

(c
′

h − (d
′

h − d
′

i))

In a similar manner, the available execution time Ai , as
proposed in [3], consists in the following components:

• For each taskTj with sj + c j ≤ si , the entire computa-

tional cost c j is considered, because there is enough
time for task Tj to complete its execution by si .

• For each task Tj with sj ≤ si < sj + c j , an execution

time of (si − sj) is considered, as that is the maximum

time that task Tj could execute until si .

This definition of the available execution time can be

further improved. The available execution time considers the

tasks that can be executed before start time sj , provided there
are enough processors in the system. We say that a task can

be executed until a certain moment t if its own start time is

lower that t . However, it must be noted that not all the tasks

that can be executed before sj really need to be executed

so soon; some of them could be delayed for a significant

amount of time and still meet their deadlines. Considering

these tasks in the expression of the available execution time

could be misleading, as they do not contribute in any way to

meeting the deadlines of the tasks with lower laxities, which

must be executed in the near future. Furthermore, even for

the tasks that need to be executed at least a certain amount

of time in the near future, executing them for more than that

minimum amount of time required would not be helpful, as

they might block the scheduling of other tasks that need to

be executed. Moreover, that would lead to tasks with lower

laxities being left behind instead of being scheduled. The

purpose of the lower bound is to find only the mandatory

execution time within each time interval (sj ,di), that is, the
time spans that tasks must be executed before time di in
order to meet their deadlines; thus, such auxiliary execution

slices must be excluded.

Thus, the available execution time can be redesigned with

respect to [3], by considering only tasks that can be executed

before a certain start time sj and, at the same time, must

be executed, at least partly, before a certain deadline di is
reached. This requires the available execution time to be

defined with respect not only to the start time sj , but also to
the deadline di .

For each deadline di and each start time sb , with sb < di ,

we define the available execution time, denoted by Abi , as
the amount of processor time available, until time sb , for
the mandatory execution of all tasks that need complete or

partial execution before time di .
As is easy to see, the set of tasks that are considered in

the expression of Abi is a subset of the tasks considered in

the expression of Ri . This subset can further be split into

four categories:

• Tasks Th with sh + ch ≤ sb and dh ≤ di , for which
the whole computational cost ch is considered.

• Tasks Th with sh < sb < sh + ch and dh ≤ di , for
which an execution time of sb − sh is considered.

• TasksTh with sh +ch ≤ sb and di < dh < di +ch , for
which an execution time of ch−(dh−di) is considered;
this is because they do not need to be executed more

than ch −(dh −di) time before di , although they could
be terminated before sb .

• Tasks Th with sh < sb < sh + ch and di < dh <
di + ch , for which the minimum between sb − sh and

ch − (dh − di) is considered; that is, the minimum

between what could be executed before sb and what

needs to be executed before di .

Put into words, we look for tasks that must be executed a

certain amount of time (either completely or partially) before

deadline di , in order to be able to meet their own deadlines.

Consider we find such a task Th , which must be executed

at least a time t before deadline di , otherwise it will miss

its deadline. Then we try to execute Th for as much time

as possible before start time sb , but not more than t , which
would be useless; of course, this also depends on the start

time sh and its relation to sb . The categories above cover all
possible cases for such tasks and how much of them can be

executed. By considering all pairs (sb ,di), we get a general
picture of what tasks can be executed and when.

Let us look again at Table 1. It is obvious that A1

i = 0,

∀i ∈ {1, 2, 3}, as s1 is the earliest start time, so nothing can

be executed before that. Furthermore, A2

3
= 0, because tasks

T2 and T3 cannot execute before s2, due to their start times,

while task T1 does not need to be executed at all before s2,
so it is not considered here. At the same time, A2

1
= A2

2
= 0;

again, tasks T2 and T3 cannot execute before s2, and task T1,
which needs to start before d2 (or d1), can only be executed

1 time unit before s2.
Finally, A3

1
= 5, because task T1 can execute 3 time units

before s3 and T2 can execute 2 time units, with respect to

deadline d3; A
3

2
= 3, because T1 needs to execute just 1

time unit until d2 in order to meet its deadline, while T2 can
execute 2 time units before s3; and A

3

3
= 2, as only T2 needs

to execute before d3 in order to meet its deadline, and it can

execute only 2 time units before s3. In all these cases, task

T3 cannot start until s3, so it does not contribute to A3

i .

In a cyber-physical system, since the start times of the

tasks are known in advance, it is possible for a process-

ing unit to be sent to the servicing location before its start

time. As a result, instead of considering the start time si , the
servicing may start at moment si −mi , including here the

movement towards the servicing location. For simplicity, we

consider here thatmi < si , ∀i , that is, there is enough time

to send a processing unit to any servicing location before its

start time is reached. If there are exceptions in practice, then

some processing units can be placed in the corresponding

locations before the whole process begins. Hence, beside the

notations introduced with the requested execution times, we

will use an additional one: the adjusted start time is denoted

by s
′

i = si −mi .

In principle, it is possible to send the processing unit to

the location where task ti will be executed even before time

si −mi ; however, this would bring no improvement, as the

processing unit would simply have to wait there until time

si . This is in turn it could make scheduling more difficult, as

one processing unit would be allocated to a certain task for

a longer time than necessary.

With all these considerations, included those stated for

the requested execution times, the formula for Abi becomes

the one below:

Abi =
∑
h

s ′h+c
′

h ≤s
′

b

d ′

h ≤d
′

i

c
′

h +
∑
h

s ′h<s
′

b<s
′

h+c
′

h

d ′

h ≤d
′

i

(s
′

b − s
′

h)+

+
∑
h

s ′h+c
′

h ≤s
′

b

d ′

i <d
′

h<d
′

i+c
′

h

(c
′

h − (d
′

h − d
′

i))

+
∑
h

s ′h<s
′

b<s
′

h+c
′

h

d ′

i <d
′

h<d
′

i+c
′

h

min(s
′

b − s
′

h , c
′

h − (d
′

h − d
′

i))

We can now introduce the new measure for the lower

bound:

Definition 3.1. Given a single-instance, independent task
set T = {T1, . . . ,Tn }, we define the Improved Utilization
of Single-Instance task set T until deadline di as IUSIi =

maxdi>sj ⌈(Ri−A
j
i)/(d

′

i−s
′

j)⌉. We also define the Improved Uti-
lization of Single-Instance task set T as IUSI = maxi (IUSIi).

Theorem 3.1. Given a multi-processor, independent task
set T = {T1, . . . ,Tn }, there is no feasible schedule on a system
with less than IUSI processors.

Proof Let us consider a deadline d
′

i and a start time s
′

j ,

with s
′

j < d
′

i . The expression of Ri includes all the tasks

that need to be executed, fully or partly, before d
′

i . If a task

with the deadline less than or equal to d
′

i did not finish until

d
′

i , its deadline will be missed and the whole schedule is

unfeasible. Also, if a task that needs to be executed partially

before d
′

i did not execute enough time until d
′

i (that is, at

least the part indicated in the expression of Ri), then it will

be impossible for it to meet its deadline, even if it will be

scheduled continuously after d
′

i ; in other words, at time d
′

i ,

its laxity will already be negative. All in all, Ri shows the

least times that these task must be executed before d
′

i .

On the other hand, A
j
i refers to precisely the same tasks

and shows howmuch time they can all execute before s
′

j , but

no more than is needed to execute before d
′

i . This measure

is based only on the start times of the tasks and gives a

best-case execution variant, provided the system contains

enough processors.

Putting them together, Ri −A
j
i gives the minimum CPU

time that is necessary for these tasks precisely in the inter-

val (s
′

j ,d
′

i) - no sooner, no later. In order to be able to use

Ri − A
j
i CPU time in an interval of length d

′

i − s
′

j , at least

⌈(Ri −A
j
i)/(d

′

i − s
′

j)⌉ processors must be in the system. Since

this condition must be satisfied for all intervals (s
′

j ,d
′

i), the

conclusion is that no feasible schedule can be found with

less that IUSI processors.
Let us now consider a more complex example than the

one from Table 1:

Example 3.1. Let us consider a single-instance, independent
task set T = {T1,T2,T3,T4,T5}, where the tasks are given by:
T1 = (5, 6, 11),T2 = (11, 5, 16),T3 = (4, 4, 14),T4 = (8, 14, 18),
T5 = (13, 3, 20), and the movement times are:m1 = 1,m2 = 2,
m3 = 2,m4 = 1,m5 = 1. By performing the computation, we
get:
R1 = 15, R2 = 32, R3 = 26, R4 = 34, R5 = 36

A1

1
= 2, A2

1
= 9, A3

1
= 0, A4

1
= 7, A5

1
= 15

A1

2
= 2, A2

2
= 14, A3

2
= 0, A4

2
= 8, A5

2
= 24

A1

3
= 2, A2

3
= 14, A3

3
= 0, A4

3
= 8, A5

3
= 22

A1

4
= 2, A2

4
= 14, A3

4
= 0, A4

4
= 8, A5

4
= 24

A1

5
= 2, A2

5
= 14, A3

5
= 0, A4

5
= 8, A5

5
= 24

IUSI1 = max(⌈(15− 2)/(12− 4)⌉, ⌈(15− 9)/(12− 9)⌉, ⌈(15−
0)/(12 − 2)⌉, ⌈(15 − 7)/(12 − 7)⌉, ⌈(15 − 24)/(12 − 12)⌉) =

max(2, 2, 2, 2, 0) = 2

IUSI2 = max(⌈(32−2)/(18−4)⌉, ⌈(32−14)/(18−9)⌉, ⌈(32−
0)/(18 − 2)⌉, ⌈(32 − 8)/(18 − 7)⌉, ⌈(32 − 24)/(18 − 12)⌉) =

max(3, 2, 2, 3, 2) = 3

IUSI3 = max(⌈(26−2)/(16−4)⌉, ⌈(26−14)/(16−9)⌉, ⌈(26−
0)/(16 − 2)⌉, ⌈(26 − 8)/(16 − 7)⌉, ⌈(26 − 22)/(16 − 12)⌉) =

max(2, 2, 2, 2, 1) = 2

IUSI4 = max(⌈(34−2)/(19−4)⌉, ⌈(34−14)/(19−9)⌉, ⌈(34−
0)/(19 − 2)⌉, ⌈(34 − 8)/(19 − 7)⌉, ⌈(34 − 24)/(19 − 12)⌉) =

max(3, 2, 2, 3, 2) = 3

IUSI5 = max(⌈(36−2)/(21−4)⌉, ⌈(36−14)/(21−9)⌉, ⌈(36−
0)/(21 − 2)⌉, ⌈(36 − 8)/(21 − 7)⌉, ⌈(36 − 24)/(21 − 12)⌉) =

max(2, 2, 2, 2, 2) = 2

IUSI = max(IUSI1, IUSI2, IUSI3, IUSI4, IUSI5) = 3

In conclusion, a minimum of 3 processing units is needed
to find an optimal schedule. As will be seen in Section 5, the
upper bound is a higher value.

4 PERIODIC SCHEDULING AND THE
LOWER BOUND

Periodic scheduling comes with a new problem: as each task

has multiple instances, we need to deal with an unlimited

number of task instances. The solution is to start from the

periodic behavior of each task and to derive a periodic be-

havior of the overall system. Further adding to the already

high complexity of the problem, each task has its own period,

which is independent from the periods of the other tasks.

The issue is then to find a general period of the system,

which accounts for the periods of all tasks.

In [28], a general period of a set of periodic tasks has been

proposed. As the task periods are independent and thus may

have any values, the solution is to consider the least common

multiple of these values. To do that, we need to be able to

treat the task periods as integer numbers. Fortunately, this

is always the case; if necessary, one can go down until the

hardware level, where each program execution is carried out

during an integer number of machine cycles. However, usu-

ally the least common multiple can be computed at higher

levels.

Definition 4.1. For a task set T , we define the general
period P as the lowest time interval with the property that
∀i ∈ {1, . . . ,n}, ∃ri ∈ N∗ such that P = ri · pi .

The meaning of Definition 4.1 can be described this way:

at time t , some of the tasks in the set could be executed (i.e.,

for such a task there is an instance whose start time comes

before t and whose deadline falls after t), while other tasks
cannot be executed. Then, at time t + P , all tasks will be in
exactly the same situation as they were at time t . This does
not necessarily mean, however, that precisely the same tasks

will be running at time t + P as they were at time t .
With the general period defined above, we start by ex-

tending the definitions used in the single-instance case to

the periodic case. In doing this, we follow the method used

in [28]. Also, in order to avoid further complication of the

formulas, in the sequel we will use the following notations:

• The term ci,k = ci will denote not just the computa-

tional cost, but the sum between the computational

cost and the time required for the processing unit

to move to the servicing location and them back to

the base location (that is, mi · 2); this is correct, as

this enhanced value shows the total amount of time

required for a processing unit to service one node.

• Accordingly, the term si,k will be used to denote the

moment that the processing unit may start moving

towards the servicing location, which is mi before

the start time of instance k of task Ti .
• In addition, the term di,k will denote the moment

when the processing unit must have arrived from the

servicing location, which ismi after the deadline of

instance k of task Ti .

Definition 4.2. For each deadline di,k , we define the re-
quested execution time, denoted by Ri,k , as the minimum
amount of processor time that is necessary until time di,k ,
such that all task instances can meet their deadlines.

The analytical expression of Ri,k is as follows:

Ri,k =
n∑
j=1

∑
h

dj,h ≤di,k

c j,h+

+

n∑
j=1

∑
h

di,k<dj,h<di,k+c j,h

(c j,h − (dj,h − di,k))

Definition 4.3. For each deadline di,k and for each start
time sb,l , we define the available execution time, denoted by
Ab,li,k , as the maximum amount of execution time that may
occur before time sb,l for the processes that need to be executed,
completely or partly, until time di,k .

As for the single-instance case, the set of tasks that con-

tribute to the expression of Ab,li,k is a subset of those who

contribute to the expression of Ri,k . The analytical expres-

sion of Ab,li,k is:

Ab,li,k =

n∑
j=1

∑
h

sj,h+c j,h ≤sb,l
dj,h ≤di,k

c j,h+

+

n∑
j=1

∑
h

sj,h<sb,l <sj,h+c j,h
dj,h ≤di,k

(sb,l − sj,h)+

+

n∑
j=1

∑
h

sj,h+c j,h ≤sb,l
di,k<dj,h<di,k+c j,h

(c j,h − (dj,h − di,k))+

+

n∑
j=1

∑
h

sj,h<sb,l <sj,h+c j,h
di,k<dj,h<di,k+c j,h

max(sb,l − sj,h , c j,h−

− (dj,h − di,k))

Definition 4.4. Let IU P be the Improved Utilization of
Periodic task set T , computed as follows:

IU P = max

di,k>sb,l
⌈(Ri,k −Ab,li,k)/(di,k − sb,l)⌉,

∀i,b ∈ {1, ...,n},k, l ∈ N

We also denote by IU P(i,k) the partial computation of the

IU P , restricted to the instances of all tasks with deadlines

until di,k : IU P(i,k) = maxdm,o>sb,l ⌈(Rm,o −Ab,li,k)/(dm,o −

sb,l)⌉, ∀m,o,dm,o ≤ di,k

Theorem 4.1. The lower bound on the number of proces-
sors, determined by the computation of the partial Improved
Utilization of Periodic task set, has a periodic behavior, given
by the general period P of the task set: maxi IU P(i,k) =
maxi IU P(i,k + ri).

Proof The proof is very much similar to the one given in

[28].

We start by separating Ri,k into the two terms that make

its expression. When computing Ri,k+ri , the first term in-

creases by

∑n
j=1 r j · c j ; this is because at time di,k + P , for

each task Tj , there will be exactly r j additional instances
that reached their deadlines, when compared to time di,k .

As for the second term, we look for the task instances

Tj,h for which di,k < dj,h ≤ di,k +c j,h . There are two cases:
a) At time di,k there is an instance h of task Tj with

di,k < dj,h ≤ di,k + c j,h , that is, a task satisfying the con-

dition. Then, after one general period P , we have di,k+ri <
dj,h+r j ≤ di,k+ri + c j,h+r j , so Tj,h+r j also satisfies the con-

dition.

b) At time di,k there is an instance h of task Tj with
dj,h ≤ di,k and di,k + c j,h < dj,h+1, so no instance of task

Tj to satisfy the condition. Then, after one general period P ,
we have dj,h+r j ≤ di,k+ri and di,k+ri + c j,h+r j < dj,h+r j+1,

so there is no instance of task Tj to satisfy the condition.

By summing the two terms, we get Ri,k+ri = Ri,k +∑n
j=1 r j · c j .

A similar reasoning applies to the four terms ofAb,li,k . The

first term increases by

∑n
j=1 r j · c j , because after one general

period, for each task Tj , there will be exactly r j additional
instances that reached their start times and deadlines. As for

the other three terms, as before, at each time t theremay be at

most one instance of a taskTj which satisfies the conditions

sj,h < sb,l < sj,h + c j,h or di,k < dj,h < di,k + c j,h or

both; then, at time t + P , the situation will be precisely

the same. This leads to A
b,l+rb
i,k+ri

= Ab,li,k +
∑n
j=1 r j · c j , so

Ri,k+ri −A
b,l+rb
i,k+ri

= Ri,k −Ab,li,k .

Now we consider a deadline and a start time from two

different general periods, that is, di,k+ri and sb,l . We then

get:max ⌈(Ri,k+ri −A
b,l
i,k+ri

)/(di,k+ri −sb,l)⌉ =max ⌈((Ri,k−

Ab,li,k) +
∑n
q=1 rq · cq)/((di,k − sb,l) + P)⌉

As shown in [28], this would increase the maximum

value (the lower bound) throughout the general periods

only ifmax ⌈(Ri,k −A
b,l
i,k)/(di,k −sb,l)⌉ < (

∑n
q=1 rq · cq)/P =∑n

q=1 cq/pq for k = 0, ri − 1, i = 1,n (i.e., the first general

period). This is not true, however, because IUSI has been
particularly designed to provide enough processor time such

that all tasks can meet their deadlines. Thus, when task in-

stances from different general periods are considered, the

lower bound does not increase.

In conclusion, maxi IU P(i,k) = maxi IU P(i,k+ri), so the
lower bound can be determined by making the computation

only for the first general period.

5 THE UPPER BOUND
The upper bound is intended to provide a limit in the num-

ber of processors beyond which any further addition of new

processors is useless. Any scheduling algorithm should be

able to find a feasible schedule with this number of proces-

sors. While the aim is always to find a feasible schedule for

the lowest number of processors possible, the upper bound

is useful because it reveals the complexity of the problem at

hand.

A measure of the upper bound has been proposed in [4]

for non-preemptive, single-instance task sets. Just as for the

lower bound, the result is also valid for preemptive task sets.

It involves counting, for each moment, the tasks that may

be in execution when that moment arrives. In fact, such

counting remains constant during a certain period of time,

until one or more tasks are beginning and/or terminating;

in this context, beginning means reaching the start time,

while terminating means reaching the deadline. Thus, these

change moments are the only ones when counting needs

to be performed. For cyber-physical systems, the difference

is that the start time has to be replaced with the moment

when the servicing of the task may begin, and the deadline

is replaced with the moment when the servicing has to stop.

This way, the delays introduced by the movement of the

processing unit to the processing location and back to the

base location are taken into account. As in the previous

sections, one has to subtract the movement delay from the

start time and to add it to the deadline.

The upper bound is then determined through the follow-

ing steps:

• Build the set U of all moments when the servicing of

at least one task may begin. As seen before, for each

task Ti , the corresponding moment is time si −mi .

• Add to the setU all moments when the servicing of at

least one task has to end. For each task, this moment

is the task deadline.

• U is a true set: if multiple change points fall in the

same moment, that moment is considered only once.

• SortU in ascending order.

• For each element uj ∈ U , compute IU Pj , namely the

number of tasks whose servicing may start no later

than uj and has to end no sooner than uj+1.
• The upper bound is IU P = maxj (IU Pj).

Theorem 5.1. In a system with IU P processors, it is always
possible to find a feasible schedule for the given task set.

Proof From the definition of IU P , at each moment t , the
number of tasks that may be executed is less than or equal to

IU P . Thus, at each moment t , there are enough processors

available for all tasks that might need to be scheduled at that

moment. Since this holds for all moments, the conclusion is

that any scheduling algorithm can find a feasible schedule

for IU P processors.

Example 5.1. Let us consider the same task set as in Ex-
ample 3.1. We then get the following values for the moments
recorded byU :
IU P2 = 1

IU P4 = 2

IU P7 = 3

IU P9 = 4

IU P12 = 4

IU P16 = 3

IU P18 = 2

IU P19 = 1

Hence, the value of the upper bound is IU P = maxj (IU Pj)
= 4. This value is less than the total number of tasks, but
higher than the lower bound.

As shown in [28], the measure can be extended to periodic

tasks and it exhibits periodic behavior with respect to the

general period of the task set, as it was defined before. The

same reasoning can be applied here, by simply replacing the

start time of each task instance (si,k) with the moment when

its servicingmay begin (si,k−mi). In conclusion, considering

the first general period is enough to determine the upper

bound.

6 CONCLUSION AND FUTUREWORK
This paper improves the previous work of the authors in

determining the number of processors that allows finding a

feasible schedule for a task set, if one exists. Both the single-

instance case and the periodic case are discussed, and the

relation between the two cases is determined. In addition,

the technique is adapted for mobile cyber-physical systems,

for which the delays introduced by the movement of the

processing units to various locations must be considered.

The results obtained so far have been derived from the

general characteristics of task scheduling. This is clearly

an advantage, as it provides bounding estimates that are

always valid, regardless of the scheduling algorithm, and

a limitation, since no information about the scheduling al-

gorithm is used. Further improvement could be achieved

by following that direction, that is, taking into account the

particular behavior of the various scheduling algorithms.

Another open problem is that, while the upper bound

provides a clear-cut limit, the lower bound does not guar-

antee finding a feasible schedule. Thus, it would be useful

to study how often the lower bound is enough in practice

for achieving a feasible schedule and to determine whether

there is a certain dependency between the lower bound and

the number of processors that are actually needed for a given

task set.

REFERENCES
[1] A. K. Amoura, E. Bampis, C. Kenyon, and Y. Manoussakis, Scheduling in-

dependent multiprocessor tasks, Proceedings of the 5th Annual European

Symposium of Algorithms, pp. 1–12, Berlin, 1997. Springer Verlag.

[2] Ş. Andrei, A.M.K. Cheng, G. Grigoraş, and V. Rădulescu. An efficient
scheduling algorithm for the non-preemptive independent multiprocessor
platform, International Journal of Grid and Utility Computing, 3(4):215–

223, 2012.

[3] Ş. Andrei, A.M.K. Cheng, and V. Rădulescu, Estimating the number
of processors towards an efficient non-preemptive scheduling algorithm,

Proceedings of 13th International Symposium on Symbolic and Numeric

Algorithms for Scientific Computing (SYNASC’11), pp. 93–100, IEEE

Computer Society, Timisoara, 2011.

[4] Ş. Andrei, A.M.K. Cheng, and V. Rădulescu, An Improved Upper-bound
Algorithm for Non-preemptive Task Scheduling, Proceedings of 17th

International Symposium on Symbolic and Numeric Algorithms for

Scientific Computing (SYNASC’15), pp. 153–159, IEEE Computer Society,

Timisoara, 2015.

[5] S. K. Baruah, The non-preemptive scheduling of periodic tasks upon mul-
tiprocessors, Real-Time Syst., 32(1-2):9–20, 2006.

[6] J. Blazewicz, P. Dell’Olmo, M. Drozdowski, and M. G. Speranza, Schedul-
ing multiprocessor tasks on three dedicated processors, Inf. Process. Lett.,
41(5):275–280, 1992.

[7] G. C. Buttazzo, M. Bertogna, and G. Yao, Limited Preemptive Schedul-
ing for Real-Time Systems: a Survey, IEEE Transactions on Industrial

Informatics (Volume: 9, Issue: 1), pp. 3–15, ISSN: 1551–3203, 2013, IEEE

Computer Society.

[8] Y. Cai and M. C. Kong, Nonpreemptive scheduling of periodic tasks in uni-
and multiprocessor systems, Algorithmica, 15(6):572–599, 1996.

[9] J. Carpenter, S. Funk, P. Holman, A. Srinivasan, J. Anderson, and

S. Baruah, A categorization of real-time multiprocessor scheduling prob-
lems and algorithms, Handbook on Scheduling Algorithms, Methods,

and Models. Chapman Hall/CRC, Boca, 2004.

[10] Y. Chao, S. Lin, K. Lin, Schedulability issues for EDZL scheduling on real-
time multiprocessor systems, Information Processing Letters, 107(5):158–

164, 2008.

[11] Cheng, Albert M. K., Real-Time Systems: Scheduling, Analysis, and Verifi-
cation, John Wiley & Sons, Inc., 2002.

[12] R. I. Davis, A. Burns, FPZL Schedulability Analysis, 17th IEEE Real-Time

and Embedded Technology and Applications Symposium (RTAS), pp.

245–256, Chicago, 2011.

[13] R. I. Davis, S. Kato, FPSL, FPCL and FPZL Schedulability Analysis, Real-
Time Systems, 48(6):750–788, 2012.

[14] M. L. Dertouzos, Control robotics: The procedural control of physical
processes, Information Processing, 74:807–813, 1974.

[15] M. L. Dertouzos, A. K. Mok,Multiprocessor online scheduling of hard-real-
time tasks, IEEE Transactions on Software Engineering, 15(12):1497–

1506, 1989.

[16] S. Dolev and A. Keizelman, Non-preemptive real-time scheduling of mul-
timedia tasks, Real-Time Syst., 17(1):23–39, 1999.

[17] M. Grenier and N. Navet, Fine-tuning MAC-level protocols for optimized
real-time qos, IEEE Transactions on Industrial Informatics, vol. 4, no. 1,

pp. 6Ű-15, 2008.

[18] N. Guan, W. Yi, Z. Gu, Q. Deng, and G. Yu, New schedulability test
conditions for non-preemptive scheduling on multiprocessor platforms,
RTSS ’08: Proceedings of the 2008 Real-Time Systems Symposium, pp.

137–146, Washington, DC, USA, 2008. IEEE Computer Society.

[19] J. A. Hoogeveen, S. L. van de Velde, and B. Veltman, Complexity of
scheduling multiprocessor tasks with prespecified processor allocations,
Discrete Appl. Math., 55(3):259–272, 1994.

[20] M. Kubale, Preemptive scheduling of two-processor tasks on dedicated
processors, Automatyka, 1082:145–153, 1990.

[21] E. A. Lee, Cyber Physical Systems: Design Challenges, ISORC ’08: Proceed-

ings of the 2008 11th IEEE Symposium on Object Oriented Real-Time

Distributed Computing pp. 363–369, 2008.

[22] S. K. Lee, On-line multiprocessor scheduling algorithms for real-time tasks,
TENCON ’94. IEEE Regions 10’s Ninth Annual International Conference,

pp. 607–611, 1994.

[23] C. Liu, L. Zhang, D. Zhang, Task Scheduling in Cyber-Physical Systems,
Ubiquitous Intelligence and Computing, 2014 IEEE 11th Intl. Conf. on

and IEEE 11th Intl. Conf. on Autonomic and Trusted Computing, and

IEEE 14th Intl. Conf. on Scalable Computing and Communications and

Its Associated Workshops, pp. 319–324, 2014.

[24] R. Marau, P. Leite, M. Velasco, P. Marti, L. Almeida, P. Pedreiras, and J.

Fuertes, Performing flexible control on low-cost microcontrollers using a
minimal real-time kernel, IEEE Transactions on Industrial Informatics,

vol. 4, no. 2, pp. 125Ű-133, 2008.

[25] A. K. Mok, Fundamental design problems of distributed systems for the
hard-real-time environment, Technical report, Massachusetts Institute

of Technology, Cambridge, MA, USA, 1983.

[26] S. Park, J. Kim, and G. Fox, Effective real-time scheduling algorithm for
cyber physical systems society, Future Generation Computer Systems,

vol. 32, pp. 253–259, 2014.

[27] H. Ramaprasad and F. Mueller, Tightening the bounds on feasible pre-
emptions, ACM Transactions on Embedded Computing Systems, vol. 10,

no. 2, pp. 1-Ű34, 2010.

[28] V. Rădulescu, Ş. Andrei, and A.M.K. Cheng, Resource Bounding for Non-
preemptive Task Scheduling on a Multiprocessor Platform, Proceedings of

18th International Symposium on Symbolic and Numeric Algorithms

for Scientific Computing (SYNASC’16), pp. 157–164, IEEE Computer

Society, Timisoara, 2016.

[29] L. Sha, R. Rajkumar, and J. Lehoczky, Priority inheritance protocols: An
approach to real-time synchronization, IEEE Transactions on Computers,

vol. 39, no. 9, pp. 1175-Ű1185, 1990.

[30] J. A. Stankovic, M. Spuri, M. D. Natale, and G. C. Buttazzo Implications of
classical scheduling results for real-time systems, Computer, 28(6):16–25,

1995.

	Abstract
	1 Introduction
	2 The Model
	3 The Lower Bound
	4 Periodic Scheduling and the Lower Bound
	5 The Upper Bound
	6 Conclusion and Future Work
	References

